If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-28x-98=0
a = 16; b = -28; c = -98;
Δ = b2-4ac
Δ = -282-4·16·(-98)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-84}{2*16}=\frac{-56}{32} =-1+3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+84}{2*16}=\frac{112}{32} =3+1/2 $
| 3,6*x-2,5=4,8*x+1,1 | | -x^2+6.5x-10.5625=0 | | 16/9+6c=30 | | 2x/4-5/3=x-7/2 | | (13x+2)(5x-7)=(3x-4) | | 6+x.2=82 | | x+(x+100)=100 | | -x^2-6.5x+10.5625=0 | | -5x-7=-6x+15 | | x^2-6.5x+10.5625=0 | | 4-(b-3)=31 | | 3a+5=49 | | 3y’+2y=4 | | 4=7n | | 11x-9=-4x+23 | | 32x=31x+5 | | 3/11b=10 | | -4x-5+x=-10x+30 | | 5x2+10x+56=0 | | 3n+2,n=2 | | 5x+5+5x+51=10x–84+10x+100 | | 5x+6=14x-32 | | 5x+6=14x-38 | | 4x+(×+2)=32 | | 4x^2-24x-540=0 | | 4z-16=8 | | 1.3=1.0+0.3x4.3=4.0+0.3= | | 25x4+40x2+16=0 | | P(q)=90-3q | | 3.6*x-2.5=4.8*x+1.1 | | -7=2x-2 | | 3x-15=2+8 |